
J .  Fluid Mech. (1996), onl. 308, pp .  341-361 
Copyright 0 1996 Cambridge University Press 

34 1 

Permeability of three-dimensional models of 
fibrous porous media 

By J. J. L. HIGDON A N D  G. D. FORD 
Department of Chemical Engineering, University of Illinois, Urbana, 1L 61801-3791, USA 

(Received 14 October 1994 and in revised form 22 September 1995) 

Viscous flow through three-dimensional models of fibrous porous media is analysed. 
The periodic models are based on ordered networks of cylindrical fibres on regular 
cubic lattices. Numerical solutions are obtained using the spectral boundary element 
method introduced by Muldowney & Higdon (1995). Results are presented for solid 
volume fractions ranging from extreme dilution to near the maximum volume fraction 
for permeable media. Theoretical estimates are derived using slender-body theory and 
lubrication approximations in the appropriate asymptotic regimes. Comparisons are 
made with model predictions based on properties of two-dimensional media (Jackson 
& James 1986), and with results for disordered dispersions of prolate spheroids (Claeys 
& Brady 1993b). 

1. Introduction 
Fluid flow through porous media plays an important role in a variety of engineering 

systems. In these applications, the porous materials may generally be divided into two 
classes : granular media and fibrous media. Granular media are composed of compact 
grains bound together to form a continuous solid matrix with a void space 
characterized by large open pores connected by networks of narrow constrictions. 
Common examples include rock formations in petroleum reservoirs, catalyst particles 
and packed beds employed in reactors and mass transfer operations Fibrous media 
may be composed of individual rod like particles or a complicated mesh of curving, 
intertwining fibres. Common examples of fibrous media include industrial filters, 
biological tissues, certain polymer membranes and many materials produced in the 
pulp and paper industry. In addition to these direct applications, fibrous porous media 
are of interest, because their properties are closely related to those of fibrous 
suspensions and entangled polymer networks. 

Owing to their prevalence in industrial applications, granular media have received 
most of the attention in theoretical studies of porous materials. Numerous three- 
dimensional models have been developed with rigorous analyses of transport processes 
involving viscous flow, electrical conductivity, elastic deformation and acoustic wave 
propagation. A survey of these efforts has been given by Larson & Higdon (1989) and 
by Chapman & Higdon (1992, 1994). A comprehensive review of the literature on 
fibrous media has been conducted by Jackson & James (1986). These authors discuss 
a variety of theoretical models and present a large collection of experimental data for 
both natural and synthetic fibrous media. In contrast to granular media, Jackson & 
James find no rigorous analysis for any three-dimensional model of fibrous porous 
media. They give an extensive review of the models for two-dimensional media, divided 
into two categories: (i) flow aligned with arrays of parallel rods and (ii) flow normal 
to arrays of parallel rods. In the first category, Sparrow & Loeffler (1959) presented an 
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analysis for square and hexagonal lattices of circular cylinders valid at all 
concentrations. Drummond & Tahir (1984) repeated these calculations and developed 
an asymptotic expression for the permeability at small solids concentrations. Larson & 
Higdon (1986) extended the model to include a variety of lattices and inclusion shapes 
to investigate the properties of anisotropic materials. Larson & Higdon also employed 
these lattice models to study the flow characteristics near the boundary of a porous 
material. 

The first rigorous analysis of flow normal to lattices of cylinders was presented by 
Hasimoto (1959) for square lattices at dilute concentrations. A later study by Sangani 
& Acrivos ( 1 9 8 2 ~ )  extended the analysis to square and hexagonal lattices over the full 
range of concentrations. Drummond & Tahir (1984) obtained similar results using an 
independent method of computation. Larson & Higdon (1987) extended their earlier 
work to consider normal flow past anisotropic lattices and discussed normal flow in the 
boundary region of a finite porous medium. Based on this collection of work and the 
consistency of the results, we may conclude that the theory of two-dimensional ordered 
fibrous media has been well established. For disordered media, Howells (1974) 
developed a theory for dilute random arrays of parallel cylinders using an averaged- 
equation approach. Sangani & Yao (1988n, b) conducted numerical simulations of 
random arrays of parallel cylinders, finding good agreement with the predictions of 
Howells at low concentrations. 

For three-dimensional media, there are only two studies cited by Jackson & James. 
The first, the ‘swarm theory’ of Spielman & Goren (1968). is a self-consistent field 
approximation. While this model was developed on a heuristic basis, it may be justified 
as the leading-order approximation in an averaged-equa tion approach for random 
media (Howells 1974). The second approach, by Jackson & James (1 982) estimates the 
permeability of a cubic lattice by linear superposition of results for two-dimensional 
lattices parallel and normal to the flow direction. While this approach is valid in the 
asymptotic limit of small solids concentration 4, the first error term decays only as 
(1nrj-l. The models of Spielman & Goren and of Jackson & James yield similar 
predictions for the permeability and both are consistent with the experimental data. 
Unfortunately, it is difficult to assess the precision of these two models, because there 
is an order of magnitude of scatter in the experimental data. For disordered fibrous 
media, there have been no rigorous three-dimensional studies in the non-dilute regime. 
A recent study by Claeys & Brady (1993a-c) however does provide some insight into 
such media. These authors used the method of Stokesian dynamics to study transport 
properties of random dispersions of spheroids. While the dispersed solid phase is not 
directly equivalent to a fibrous porous medium, the permeability results provide an 
interesting comparison for our results on model fibrous media. 

In the present effort, we present a rigorous numerical analysis of flow through three- 
dimensional models of ordered fibrous porous media. We consider cubic lattices of 
intersecting circular fibres and compute the permeability across the entire range of 
concentration. In addition to the numerical results, we provide theoretical predictions 
based on slender-body theory and lubrication theory for the low and high concentration 
limits respectively. Our goals are (i) to present accurate permeability results for a well- 
characterized model of a three-dimensional fibrous medium, (ii) to assess the accuracy 
range of the asymptotic theories, (iii) to compare this model with results for disordered 
media (Claeys & Bray 1993~-c) and with simpler models based on two-dimensional 
results (Jackson & James 1982). By extension, this last comparison provides a 
correlation with the wide range of experimental data reviewed by Jackson & James. 
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2. Formulation 
Consider a fibrous porous medium composed of straight cylindrical fibres on 

periodic cubic lattices. We define a periodic unit cell as a cube of side 2b and hereafter 
render all lengths dimensionless with respect to b. The boundaries of the unit cell are 
then defined as the planes x = k 1, y = k 1, z = k 1 .  The base vectors si and internodal 
distances d for the three regular cubic lattices are defined as 

(i) simple cubic (SC) 

~ , = ( 1 , 0 , 0 ) ,  s2=(0,1,O), s3=(0,O,1), d = l ;  ( 1 )  

s, = (1, I ,  -l), s, = (-1,1, l), s3 = (1, - 1, l), d = $13; (2) 

s1=(l,1,O), s2=(0,1,1), sg=(1,0,1), d = y ’ 2 .  (3) 

(ii) body-centred cubic (BCC) 

(iii) face-centred cubic (FCC) 

For each lattice, define a network of cylindrical fibres of radius a with axes extending 
from a lattice node to each of its nearest neighbours. For the SC lattice, each node 
connects six fibres with axes along directions ( f 1,0,0), (0, f 1,O) and (0, 0, f 1). For 
the BCC lattice, there are eight nearest neighbours, yielding fibres along axes 
(F 1, f 1, f 1). For the FCC lattice, there are twelve nearest neighbours with fibres 
along axes (& 1, & 1, 0), (0, It I ,  f 1) and ( f 1,0, f 1). Two views of the fibrous 
medium based on the FCC lattice are shown in figure 1. 

For each lattice, the intersecting cylinders form a rigid solid matrix representing a 
fibrous porous medium. The maximum cylinder radius for which the medium is 
permeable occurs at a = 1,2-”’ and 6-1/2 for the SC, BCC and FCC lattices 
respectively. The solid volume fractions q5 and maximum values 

$ = ina‘ - v/2a3, 

are given by 

sc : q ? ~ , ~ , ~ ~  = 0.941 98, 

FCC: q5 = 32/2na2-8(1+2/2)a3, $ M A X  = 0.90731, 

The term proportional to a3 in each of these expressions is associated with the volume 
excluded by the intersection of the cylinders. 

In the present paper, our goal is to calculate the permeability of a fibrous porous 
medium saturated with a viscous fluid flowing under the action of a mean pressure 
gradient G .  Owing to the cubic symmetry, the permeability tensor is isotropic, and we 
may arbitrarily choose the pressure gradient aligned with the z-axis. Under conditions 
of low Reynolds number flow, the governing equations are the Stokes equation 

BCC: q5 = y’3xa2-2d6a3, Q M A x  = 0.98865, ] (4) 

- 
and the continuity equation 

v p  + pv2u = 0 

v * u  = 0. 

The no-slip boundary condition requires 

The conditions of periodicity require 

u = 0 on all cylinder surfaces. (7) 

U(X + A) = u(x), P(X + A) = p ( ~ )  + Gh,. (8) 
Here h = (2m,, 2m,, 2mJ is any vector relating equivalent points in different unit cells, 
A, is the z component of A, and m,,m, and m, are integers. 

The periodic boundary conditions (8) are valid for solid inclusions of any form. In 
the present circumstances, symmetry conditions may be exploited to simplify these 
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FIGURE 1 (a). For caption see facing page. 

boundary conditions. Given a mean pressure gradient in the z-direction, the symmetry 
of the cubic lattices and the cylindrical fibres dictates that the velocity field has mirror 
symmetry about planes x = 0, y = 0, x = y and antisymmetry about the plane z = 0. 
These constraints combined with periodicity require zero shear stress and normal 
velocity on the sides of the unit cell. On the top and bottom planes, the transverse 
velocity is zero, and the periodic part of the pressure field is constant. The resulting 
boundary conditions are 

u, = 0, fv = 0, f ,  = 0 on x = +1, 

f, = 0, uy = 0, ,f, = 0 on y = + I ,  
u z = O ,  u,=O, f , = G  on r = f l ,  

(9) I 
where f is the surface stress vector defined byf=  van. 

Equations (5)-(9) constitute a well-posed boundary value problem for the three- 
dimensional Stokes equations. Numerous methods have been employed to solve these 
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(b) 

FIGURE 1 .  Three-dimensional views of fibrous medium based on an FCC latticc of circular cylinders. 
Lines represent contours of constant 5 or v, the parametric variables used to discrctize the surface. 
Darker fibre segments represent the concave surface of a fibre as seen from the viewing direction. (a) 
Top view, view direction (0, 0, I), (b) hexagonal plane view, view direction (1,1,1). 

equations in previous studies of three-dimensional porous media. Zick & Homsy 
(1982) used a boundary integral approach with periodic Green’s functions to solve for 
flow through lattices of spheres. Sangani & Acrivos (1 982b) employed multipole 
expansion based on the periodic Green’s function to attack the same problem. Larson 
& Higdon (1989) and Chapman & Higdon (1992) used multipole expansion based on 
the free-space Green’s function to solve for flow through consolidated media with 
overlapping spheres. In the current effort, we have solved the Stokes equations using 
a version of the boundary integral method based on the spectral boundary element 
formulation developed by Muldowney & Higdon (1 995). We give a brief account of the 
method here and refer the reader to Muldowney & Higdon (1995) for additional details 
regarding the computational implementation. 

The boundary integral method for Stokes flow is based on the integral formula 
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FIGURE 2. Mapping of spectral boundary element to square [ - 1,1] x [ - 1, I]. 

where S and T are defined by 

2 = x-x, and the unit normal vector n points into the fluid. 
This integral formula expresses the velocity at a point xu on the boundary of the fluid 

as an integral of the velocity and stress over the boundary. The surface of integration 
extends over the entire boundary of the fluid, which includes the cylinder surfaces S,  
as well as the outer boundary of the unit cell S,. A derivation of this equation may be 
found in recent monographs by Pozrikidis (1992) and Kim & Karilla (1991). When 
combined with the appropriate boundary conditions (7) and (9), equation (10) yields 
a Fredholm integral equation for the unknown velocities and stresses on the boundary 
surface. 

In this paper, we solve the boundary integral equations using the spectral boundary 
element method. Let the boundary surface be divided into a collection of NE 
curvilinear quadrilateral surface elements as illustrated in figure 2. On each element, 
the actual geometry is mapped onto a square [ - 1,1]’ in terms of parametric variables 
5 and 9. All variables including the geometry x and the physical variables u, f a r e  
discretized as Lagrangian interpolants in terms of these parametric variables. The base 
points (&, y j )  for the interpolations are chosen as the zeros of Legendre polynomials 
leading to interpolants which are equivalent to orthogonal polynomials. We define a 
set of N ,  collocation points for the geometry and NB collocation points as a basis for 
the physical variables. There is no requirement that the order of the geometry 
discretization match that of physical variables ; however, this choice does simplify the 
programming effort. 

With collocation points specified, the position of any point along the surface is 
expressed as a Lagrangian interpolant with respect to 5 and 9 ;  that is 

where hi is the (NG - 1)-order Lagrangian interpolant polynomial defined by hi(&.) = 8,. 
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By a similar process, the physical variables u and f are defined at all points on the 
boundary as interpolants using the values at the basis collocation points 

where hi is the ( N ,  - 1)-order Lagrangian interpolant polynomial defined by hi(&) = Stj .  
With the discretization of the geometry and physical variables completed, we 

substitute into the boundary integral formula (lo), and require that the integral 
equation be satisfied at the discrete set of basis collocation points x(t2, rj), i = 1, NB,  
,j = 1, N,. The discrete form of the integral equation yields a linear system of 3NE N i  
algebraic equations 

These equations, combined with the boundary data at the N E  N i  basis points, yields a 
consistent set of 3NEN2, equations in 3NE N2, unknowns. 

The matrices A and B in the discrete system are defined as integrals of the kernels and 
basis functions over the collection of surface elements, Owing to the singularity in the 
kernels S and T, special care must be taken to ensure the accurate numerical evaluation 
of these integrals. Muldowney & Higdon (1995) give a detailed description of the 
mapped Gaussian quadratures employed in evaluating these integrals. With the 
spectral element discretization described above, numerical convergence is achieved by 
increasing the order of the polynomial for a fixed set of elements. Convergence results 
demonstrating the accuracy of the method in the current application are described in 
$6 below. 

u = Af+ Bu. (15) 

3. Macroscopic properties 
Using the techniques of the previous section, we may solve for the microscopic 

velocity field throughout the fluid domain. This velocity field may then be utilized to 
predict the macroscopic properties which characterize flow through a porous medium. 
For an isotropic medium, the mean fluid velocity U is related to the mean pressure 
gradient Op though Darcy's law 

where k is called the permeability of the medium. 

horizontal plane through the unit cell, e.g. 

p U = - k O ,  (16) 

To calculate k ,  we compute the volume flow rate Q as a surface integral over any 

The magnitude of the mean velocity is given by U = Q / A  where A is the area of the 
unit cell, equal to 4 in dimensionless units. 

The permeability may be non-dimensionalized with respect to the fibre radius, 
yielding an expression 

where G is the magnitude of the mean pressure gradient. 
For each lattice, k / a 2  is a function only of the volume fraction 9. It is important to 

emphasize that this is a physical quantity whose value depends upon the lattice type, 
but does not depend on the choice of unit cell. Thus one might employ the cubical unit 
cell specified here, or one of the regular polyhedra used by Chapman & Higdon (1992) 
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or Larson & Higdon (1  989). The choice is dictated by computational convenience and 
does not affect the computed value of k /a2 .  This result is related to the fact that there 
is no unique choice for the base vectors of a given periodic lattice. 

While the permeability is the most common measure characterizing flow through a 
porous medium, certain authors prefer to calculate the mean force per unit length of 
fibre F. For our purposes, we define the fibre length L such that na2L = 4V where $V 
is the total volume of solids in the unit cell. This yields the effective length of all fibres 
accounting for the region of cylinder overlap near the lattice nodes. With this 
definition, the force per unit length F is evaluated as 

F GAna2 
g = x  

and F is related to the dimensionless permeability by 

Thus the dimensionless permeability k / a 2  and the dimensionless force F/pU may each 
be determined solely as a function of volume fraction 4 and of the lattice type. 

4. Two-dimensional models 
Before proceeding to the results of this paper, we summarize the principle results for 

two-dimensional media and for the simple model of Jackson & James for three- 
dimensional media. The permeability for flow parallel to lattices of circular cylinders 
has been calculated by Sparrow & Loeffler (1959) and by Drummond & Tahir (1984). 
The former authors present their results in graphical form, while the latter give 
expressions for the permeability for a square lattice 

k l  
a2 44 
- = -(-In$- 

and for a hexagonal lattice 

1.476 + 24 -44' + O(4')) 

k 1  
= -(-ln$- 1 .498+2~$-~4~+0($~)) .  

a 44 
We define a hexagonal lattice as a collection of hexagonal unit cells covering the 

entire plane with a circular inclusion at the centre of each cell. This is called an 
equilateral triangle array by Drummond & Tahir. 

We have recomputed the resistance for these lattices using the method of Sparrow 
& Loeffler and tabulate the results in table 1 for all concentrations from very dilute up 
to the maximum Q at which the cylinders make contact. These tabulated values are in 
excellent agreement with (21) and (22) for the smaller concentrations. 

For flow normal to lattices of circular cylinders, Sangani & Acrivos (1982a) give 
asymptotic expressions for small 4 and for 4 near $ M A X  and give tabulations for 
intermediate values. Their results for small 4 are 

k 1  
- = -(-In 4 - 1.476 + 24 - 1 .7744z + 4.076@ + 0(44)) 
a' 8 4  

for a square lattice, and 

k 1  
- = - ( - l n 4 - 1 . 4 9 0 + 2 ~ - ~ ~ 2 + 0 ( ~ 4 ) )  
a2 84 
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FT G 

4 Square Hexagonal Square Hexagonal 

0.0001 1.625 x 10" 1.629 x 10" 3.250 x 10" 3.259 x loo 
0.0010 2.313 x 10" 2.322 x loo 4.626 x 10" 4.644 x loo 
0.0100 3.991 x 10" 4.018 x 10" 7.982 x loo 8.036 x 10" 
0.0500 7.766 x loo 7.869 x 10" 1.556 x 10' 1.574 x 101 
0.1000 1.230 x 10' 1.257 x 10' 2.483 x 10' 2.513 x 10' 
0.2000 2.449 x 10' 2.554 x 10' 5.153 x 10' 5.1 15 x 10' 
0.3000 4.453 x 10' 4.806 x 10' 1.029 x 102 9.679 x lo1 
0.4000 7.918 x lo1 9.056 x 10' 2.179 x loz 1.858 x lo2 
0.5000 1.413 x lo2 1.781 x 102 5.325 x lo2 3.822 x lo2 
0.6000 2.566 x lo2 3.797 x lo2 1.764 x lo3 9.016 x 102 
0.7000 4.765 x lo2 9.204 x lo2 1.352 x lo4 2.770 x loq 
0.7500 6.552 x lo2 1.534 x lo3 1.275 x lo5 5.882 x lo3 
0.7854 8.246 x lo2 2.280 x lo3 oc 1.160 x lo4 
0.8000 2.710 x lo3 1.623 x lo4 
0.8500 5.113 x lo3 8.239 x lo4 
0.9069 1.148 x lo4 02 

TABLE 1. Resistance force per unit length F / p U  for two-dimensional arrays of circular fibres as a 
function of volume fraction 4. Results are tabulated for flow tangential F, and normal Fv to the 
cylinder axes. 

~ ~ 

- ~ 

for a hexagonal lattice. 
The results for Q near Q,ll,4x are 

- k - ~~ 2$/2( 1- ($ _ _ ~  Q )1'2)5'2 

u2- 9$ M A X  

for a square lattice, and 

for a hexagonal lattice. 
We have recomputed the resistance for normal flow past these lattices using a two- 

dimensional version of the spectral boundary element method. The results listed in 
table 1 are in excellent agreement with those of Sangani & Acrivos for all 
concentrations. 

The two-dimensional results for permeability, or equivalently, force per unit length of 
fibre F may be employed to generate a simple model for three-dimensional media. 
Jackson & James (1982, 1986) employed such an approach to estimate the resistance 
of a simple cubic lattice of cylinders. They evaluated the tangential force at a 
concentration Q/3 based on the number of axial fibres, and evaluated the normal force 
at 2Q/3 based on the number of transverse fibres. Their prediction yields 

F,, = ;FT(;Q) + 3%GQ) (27) 

where FT and Fv are the results for tangential and normal flow respectively. 

FT and F,, the asymptotic prediction for the Jackson & James model is 
With the two-dimensional results for square lattices, (2 1) and (23), used to compute 

In the following section, we shall see that the functional form and the leading 
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coefficient are correct, and we shall compare the predictions of this model with a 
rigorous asymptotic theory. 

5. Asymptotic theories 
The resistance force on a periodic lattice of cylinders may be evaluated theoretically 

in two asymptotic limits: low concentration for which a + 0 and high concentration for 
which a + a M A X .  In the first case, the aspect ratio of the fibres a/d  approaches zero and 
slender-body theory may be employed. while in the second, the gap between fibres 
approaches zero and lubrication estimates may be utilized. We begin with the analysis 
for slender-body theory. 

The velocity field exterior to a body of arbitrary shape may be represented as a 
surface integral of Stokeslets S and their related stress T over the body surface as 
expressed in (10). For slender bodies whose radius a is much smaller than other length 
scales, this velocity may be approximated by a line distribution of Stokeslets and 
higher-order singularities along the body centreline (Johnson 1980). Consider a 
straight circular cylinder of radius a and length d/2 whose centreline lies on the line r,. 
(Recall that our fibres are of length d ;  here we consider half of the fibre length.) Let 
the disturbance velocity induced by this slender body be represented by a distribution 
of Stokeslets S and dipoles D along the body axis 

where 01 and /I are the Stokeslet and dipole strengths per unit length, ds is the 
differential arc length and D is the dipole singularity defined as 

For a given point so on the body axis r,,, one may evaluate the velocity (29) on the 
cylinder surface be employing inner and outer expansions of the integrand. The dipole 
strength /Ij may be related to the force distribution aj, and the integrals yield (Johnson 
1980) 

and d 1 ~(~ -S , ) (S , -S )  

a 2  d2 
2’ = In-+-ln (34) 

In these expressions t is the local unit tangent vector and s1 and s2 are the limits of 
integration along the fibre. Equations (31k(34) are the Cartesian tensor form of 
Johnson’s equation (33). For a fibre immersed in a velocity field u*, the no-slip 
boundary condition combined with (31) yields an integral equation for the force 
distribution a. 

The expressions above represent the velocity on a single fibre induced by singularities 
along that fibre. For a periodic lattice of intersecting fibres, we focus on a given lattice 
node, and consider a collection of fibres r,w extending from that node toward each of 
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its nearest neighbours. With each fibre of length d/2, this collection constitutes the 
basic unit for the periodic lattice. The velocity at a point so on fibre I-,. may be written 

ui(so) = Jzj aATj(so) + Kij ds + C S,, uMj ds, (35) LA& lw + .w S,, 
where am] is the force distribution on fibre I-,. 

To extend this result to an infinite periodic lattice, we employ the periodic Green’s 
function S‘ as derived by Hasimoto (1959). Substituting Sp for S in (35) and in the 
definition of K in (33) yields the correct form for the disturbance velocity for all fibres 
of the periodic lattice. 

For isolated fibres under the proper restrictions, Johnson has shown that the 
solution to the integral equation (3 1) determines the force distribution to within an 
error of O(2) where E is the ratio ale and / is a characteristic length scale. The length 
l is given by the minimum of the body length, the centreline radius of curvature and 
any characteristic length associated with urn. The O(2) accuracy requires two 
conditions which are not met in the present application: (i) the ends of the fibres must 
be no blunter than those of an equivalent ellipsoid, and (ii) no segment along the body 
axis may pass close to another segment along the axis. The constant-radius cylinders 
and intersecting fibres of our model violate these assumptions. Under these conditions, 
the velocity represented by (35) yields an O( 1) error near the ends of each fibre which 
decays as In (s-l)/ln (e-l) as one moves a distance s from the end. The integrated effect 
on the solution for the force distribution a yields an error of U(c) in the total force on 
a fibre. Thus, slender-body theory as described above yields an error of O(a/d) for the 
force on the periodic cylinder lattices in our model fibrous medium. 

There are two strategies for solving the integral equation represented by equation 
(35). In the first, one may choose a suitable discretization and obtain a numerical 
solution for the force distribution a. We have implemented this approach using a one- 
dimensional version of the spectral boundary clement method with excellent results. A 
second approach is to use (35) as the basis of an iterative solution, yielding a series 
solution in inverse powers of ln(d/a). To pursue this alternative, we rearrange the 
equation, extracting the ln(d/a) term from the definition of 2’ and write 

- K;a,*ds- M xAT/rMS;a,jds]. * s,, (36) 

Here we have written J‘ to designate the modified expression with the ln(d/a) term 
extracted from 2‘. We have written S p  and K P  to emphasize that these kernels are 
based on the periodic Green’s function. 

Equation (36) is the equivalent of Johnson’s (34). With an initial guess a = 0 on the 
right-hand side, the left-hand side yields the leading-order solution for a, and 
successive application of this iteration yields a series solution in inverse powers of 
In (d/a) .  A few comments concerning the numerical execution of this procedure are in 
order. First, the periodic Green’s functions are evaluated by the Ewald summation 
technique described by Hasimoto. The integrals on the right-hand side of (36) are 
evaluated numerically using a combination of high-order Gaussian quadratures and 
variable mappings. These integrations require some care owing to the singularities in 
the kernels and the logarithmic singularity in the force distributions a at the fibre 
intersections. 
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n sc BCC FCC 
0 I 1 1 
1 - 1.527 x 10' - 1.627 x 10' -2.694 x 10' 
2 -1.890 x 10' -2.733 x 10' - 1.137 x 10' 
3 -7.759 x 10" - 1.430 x 10' -1.028 x lo2 
4 -3.279 x 10' -7.858 x 10' - 1.018 x lo3 
5 - 1.424 x 10' -4.565 x 10% - 1.084 x lo4  
6 -6.329 x 10' -2.798 x lo3 - 1.220 x lo5 
7 -2.867 x lo3 - 1.797 x l o 4  - 1.427 x lo6 
8 - 1 . 3 1 7 ~ 1 0 ~  - 1 . 1 9 9 ~ 1 0 ~  - 1 . 7 1 7 ~  lo7 
9 - 6 . 1 0 4 ~  lo4 - 8 . 2 0 4 ~  lo5 - 2 . 1 0 4 ~  l o *  

10 -2.838 x lo5 -5.718 x lo6 -2.619 x l o 9  
11 - 1.315 x l o 6  -4.021 x lo' -3.289 x 10'" 

13 - 2 . 6 6 0 ~  10' - 1 . 9 8 4 ~  lo9 - 5 . 2 9 2 ~  10" 
14 - 1.095 x 10' - 1.369 x 10'" -6.712 x lOI3  

TABLE 2. Coefficients C, for asymptotic expansions for F / y U  as defined in equation (39). 

12 -6.011 x 10' - 2 . 8 3 2 ~  10' -4.161 x 10" 

For each of the three lattices (SC, BCC, FCC), we have computed the first 15 terms 
in the asymptotic expansion. This yields an expression for the mean force/length on 
the fibres in the form 

F lox l5 
- = - C A ,  (In (d/a))-". 

In the interest of brevity, we do not present the coefficients A ,  for these series; however, 
their values may be recovered from the coefficients in table 2 as described below. 

In principle, the inclusion of a large number of terms in the asymptotic series might 
yield results of accuracy comparable to the direct numerical solution. In practice, we 
find that the radius of convergence of these series is limited by a singularity on the 
negative real axis. A Domb-Sykes plot or d'Alembert ratio test (see Van Dyke 1974) 
reveals the approximate location of the singularity and shows it to be a simple pole. As 
suggested by van Dyke, we map this singularity to -a by introducing an Euler 
transformation, recasting the series as 

(3 7) 
PU 3 ,=I 

where the constant I,, takes the values 3.2, 6.13 and 12.7 for the SC, BCC and FCC 
lattices respectively. The coefficients B, may be recovered from the coefficients in table 
2 below. 

While (38) yields improved convergence, the series coefficients now show that the 
nearest singularity is located on the positive real axis. This is a physical singularity 
corresponding to small aspect ratios where the slender-body approximation breaks 
down. This singularity, which is also a simple pole, may be extracted in a multiplicative 
fashion (Van Dyke 1974) to improve the convergence of the series. The result is 

c n  
14 

c F 1On 1 -=- 
pU 3 In (d/a)  - II ,=,,(In (d /a)  + I,,)n. (39) 

The constant I, is 2.0, 1.96, 2.21 for the SC, BCC and FCC lattices respectively. The 
coefficients Cn for each of the three lattices are presented in table 2. 

To demonstrate the limits of the simple expansion (37) and the improved 
performance of the asymptotic series (38) and (39), we plot the force F/pU as a 
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FIGURE 3. Resistance force per unit length F/pW for a BCC fibre lattice as a function of solid fibre 
aspect ratio d/a. Curves are results from slender-body theory: -, numerical solution; -----, 
asymptotic series (37); -.-, modified series (38); -. .-, modified series (39). Symbols 0 are 
spectral boundary element results for a BCC lattice. 

function of a/d  for each of these series and compare with the numerical solutions of 
the slender-body equations and the results of the full spectral element solution. Figure 
3 shows the results for the BCC lattice. We observe that the simple expansion has a very 
limited range, departing from the numerical solution at n/d  of order 3 x The 
extraction of the first singularity extends the useful range by an order of magnitude, 
and the final series (39) yields results which are indistinguishable from the numerical 
solution over the entire range. We note that both the asymptotic series (39) and the 
numerical solution for slender-body theory show excellent agreement with the spectral 
boundary element results up to a / d  = 0.08, i.e. an aspect ratio of order 12: 1 .  A detailed 
examination of the numerical results confirms the O(a/d) accuracy of the slender-body 
integral equation (35). The qualitative behaviour of the SC and FCC results (not 
shown) is similar to that for the BCC case. The performance of the simpler series (37), 
(38) is closer to that of (39) for SC and is much worse for the FCC lattice. The final 
series (39) closely matches the numerical solution in all cases. A further comparison of 
these results with the three-dimensional spectral element results will be presented in $6. 

As the concentration of the porous medium approaches its maximum value with 
a+ aiMAX, the pressure change in the medium is dominated by that occurring in narrow 
constrictions where the open cross-section reaches its minimum size. These con- 
strictions form channels of simple cross-section (square for SC, BCC ; equilateral 
triangle for FCC) whose size changes slowly compared to their length. In these 
circumstances, it is possible to predict the pressure change by employing a lubrication 
theory based on a straight channel with the same cross-section. This approach has been 
used previously by Larson & Higdon (1989) and Chapman & Higdon (1994) who 
provide details of the lubrication model. 
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The cross-section of the narrow channel in each fibre lattice may be characterized by 
a length scale L which we define as the half-side for the square channel and as the radius 
of an inscribed circle for the triangular channel. The cross-sectional length scale is 
determined by the lattice geometry and may be expressed as 

G = a M A X - a + K s 2 ,  (40) 

where s is the arclength measured along the channel, and K takes values 1 /(2a), 2-'/'/3 
and 1/(2a) for the SC, BCC and FCC lattices respectively. 

With this geometry specification, it is straightforward to evaluate the pressure 
change along the channels as a function of volume flow rate, and hence to determine 
the permeability of the medium. For the unit cube specified in $2, the volume flow rate 
in each channel equals the total flow through the unit cell for the SC and BCC 
geometries. For the FCC geometry, the flow through each constriction is 1/8 the total 
flow, while the fluid passes through four constrictions in traversing the cell. In this 
latter case, the ratio Q / A p  for the medium is thus twice that for a single channel. The 
lubrication results for the permeability are 

sc : I - = 0.202 50 (aML4x - a)712ap5/2, 
k 
a' 

I k 7 / 2  -2 BCC : -T = 0.196 63 (a,23Ax - a )  a , 
a' 

FCC : J - = 0.561 38(a,,,,,-a)712a-5i2. 
k 
U 2  

The scaling k/a2 - , - a)7ia in these lattices may be contrasted with that found 
by Sangani & Acrivos for the two-dimensional lattices k/a2 - (a$1Ax-a)5'2. The 
difference lies in the fact that the limiting channel geometry in two dimensions is a pair 
of parallel plates of infinite width, in contrast to the square and triangular channels of 
the three-dimensional media. 

In the following section, we shall compare the lubrication results with the three- 
dimensional spectral boundary element computations. 

6. Results 
Numerical solutions for the fluid velocity field and for the macroscopic parameters 

are computed using the spectral boundary element method as described in $2 above. 
For the SC lattices, we shift the unit cell to position the fibre nodes at the corners of 
the cube with the fibre axes along the edges of the unit cell. In this configuration, the 
domain is discretized with two spectral elements per quarter cylinder, and one element 
per cube face for a total of 30 elements. For certain cases with small fibre radius, the 
cube faces are divided into five elements yielding a total of 54 elements. For the BCC 
lattices, the discretization employs six elements on each of the eight cylinders, and five 
elements per cube face giving a total of 78 elements. For the FCC lattice, each full 
cylinder is divided into four elements and each cube face is divided into four elements. 
There are 12 full fibres radiating from the centre node, plus an additional collection of 
truncated fibres on the walls of the unit cell (see figure la). Thus there are the 
equivalent of 24 full fibres in the unit cell with a total of 120 elements. 

For each lattice, the total number of unknowns 3 N t  NE may be reduced 16-fold by 
exploiting the symmetry about the planes x = 0, y = 0, x = y and z = 0. Thus a 6 x 6- 
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order solution for the 30 element SC lattice leads to 207 unknowns, while the 10 x 10 
solution on the FCC lattice yields approximately 2250 unknowns. All computations 
were performed on IBM RS/6000 workstations or an SGT Challenge parallel 
processor. Typical single processor times on the SGI Challenge ranged from 20 s for 
the 6 x 6 SC lattice to 120 s for a 6 x 6 BCC lattice to 1450 s for a 10 x 10 FCC 
computation. Multiprocessor runs decreased approximately linearly with the number 
of C.P.U.S. using up to eight processors. Computation times on an IBM RS6000/370 
were roughly 40% to 50% of those on the single processor SGI. 

We begin our discussion of the numerical results with a selection of test runs which 
demonstrate the convergence of the spectral boundary element algorithm. Table 3 lists 
the computed value of the dimensionless permeability k /a2  as a function of the spectral 
polynomial order NB.  Convergence runs are shown for each of the three lattices with 
results for three radii corresponding to a slender fibre (a = 0.01), a fibre of moderate 
thickness and a fibre near the maximum radius for which the overlapping cylinders 
completely seal off the flow. The small fibres present a computational challenge because 
the spectral discretization must resolve the velocity dependence which approaches In Y 
for small radii. The large fibres present a challenge because the shear stress reaches large 
values in the narrow constrictions in the lubrication limit as the channels are pinched 
off. The intermediate radii present the least computational challenge. Despite these 
challenges, the spectral boundary element computations demonstrate excellent 
convergence in all cases with a maximum relative error of 1 x for the BCC lattice 
and 5 x lo-* for the SC and FCC cases. 

The major numerical results of this paper arc shown in table 4. This table presents 
the permeability k /a2  and the dimensionless force F / p L  for each lattice over a range 
of fibre radii from the dilute limit to concentrations approaching the limit of zero 
permeability. Convergence tests have been conducted to confirm the precision of the 
results in all cases with an error of & 1  in the last figure shown. An independent 
confirmation of the results is obtained by comparison with the permeability or 
resistance force predicted by the asymptotic theories of $5.  Figure 4(a) shows the 
dimensionless force F/pU plotted versus volume fraction q5 for the three lattices. At 
small concentrations we show the predictions based on slender-body theory (39), while 
at high concentrations we plot the results of the lubrication approximation (41). 
Finally, we show the prediction of Jackson & James (27) using accurate numerical 
values for FT and FN. At low concentrations, we observe that all three lattices yield 
similar results for the resistance force. Slender-body theory shows good agreement with 
these results up to 5 YO for the SC lattice and up to 10 YO for the BCC and FCC cases. 
The limit of accuracy for slender-body theory is determined by the aspect ratio of the 
fibres. At the same aspect ratio, the latter two cases have a higher volume fraction, 
hence the slightly greater range of validity. The lubrication approximations show 
excellent agreement with the numerical results at high concentrations, and yield a good 
approximation down to approximately 75 Yo to 80 Yo of QlwAX. The model of Jackson 
& James overpredicts the resistance by up to 25 % at low concentration (around 1 YO) 
and shows best agreement in the range 10 YO to 20 YO volume fraction. Above this level, 
the model significantly underpredicts the resistance force. The results of Jackson & 
James are of interest because they provide a comparison with the large sample of 
experimental data reviewed by those authors. The experimental data covering volume 
fractions from 0 to 30 YO were well matched by the prediction of Jackson & James, and 
hence agree well with the current idealized models of fibrous media. 

Turning our attention to the permeability, we plot k /a2  versus volume fraction in 
figure 4 (b). The results of this figure reflect the same behaviour as in figure 4 (a), as one 
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0 0.2 0.4 0.6 0.8 1 .o 
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FIGURE 4. (a) Resistance force per unit length F/yW and (b) permeability k/aZ for fibrous media as 
a function of solid volume fraction $. Solid lines are computed results for three-dimensional cubic 
lattices: 0, SC; 0, BCC; a, FCC; dashed curves are asymptotic results from slender-body theory 
and lubrication theory; dashed-dotted line is the model of Jackson & James, equation (27). 
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0 0.1 0.2 0.3 0.4 

9 
FIGURE 5. Resistivity a 2 / k  for fibrous media plotted as a function of solid volume fraction 4. Solid 
lines are computed results for three-dimensional cubic lattices. Open symbols are results of Claeys & 
Brady (1993b) for dispersions of prolate spheroids: 0, d/a  = 20; A, d/a  = 10; V, d/a = 6 .  
Dashed-dotted line is the model of Jackson & James, equation (27). 

would expect given the simple relationship (20) between F and k .  It is interesting to 
observe that the FCC medium has the lowest permeability of the three cubic lattices. 
This reflects the fact that, in some sense, the FCC lattices distribute the fibres in a more 
uniform manner throughout the volume. It is well known (Jackson & James 1986) that 
a non-uniform distribution of material yields a higher permeability owing to the 
disproportionate flow increase in the less-dense regions. 

In our final figure, we compare the present results with those of Claeys & Brady 
(1993 a-c) for disordered dispersions of prolate spheroids. Following those authors, we 
plot the resistivity of the medium (a2 /k )  as a function of volume fraction in figure 5. 
This figure includes results for spheroids of aspect ratio 6, 10 and 20. For non- 
interacting particles in the dilute limit, the resistivity is directly proportional to Q with 
only a logarithmic dependence on aspect ratio. This explains the nearly linear 
behaviour from a volume fraction of 0 to approximately 5 % .  The departure from 
linearity at higher q5 is associated with the particle interactions. The spheroids with 
aspect ratios of 10 and 20 show good agreement with the ordered lattices for all data 
reported by Claeys & Brady, including volumes fractions up to approximately 12 %. 
The shorter particles with aspect ratio 6 begin to show departures from the fibre lattice 
results, yet even these particles show reasonable agreement up to volume fractions of 
30%. (For these higher concentrations, Claeys & Brady observed a nematic phase 
transition and reported separate resistivities for the two principal directions. Here we 
show the results averaged over all orientations.) Both the ordered lattices of this paper 
and the disordered dispersions of Claeys & Brady fall within the scatter of the 
experimental data reported by Jackson & James and represented by their model 
equation (27).  
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In this paper, our primary concern has been the behaviour of fibrous media at finite 
values of 4. From the discussion above, we observe that the ordered fibre lattices and 
disordered dispersions show little difference in macroscopic properties at these volume 
fractions. It is important to emphasize however that the limiting values for dilute 
systems may show significant differences owing to the difference between the 
continuous fibrous medium and the dispersed spheroidal suspensions. As the volume 
fraction of the fibre lattice approaches zero, the fibre radius approaches zero, while the 
length remains constant. Thus the aspect ratio d /a  approaches infinity as &”’. The 
fibres maintain a continuous connected solid phase with O(1) interactions in the 
neighbourhood of the fibre junctions. This regime where Q h / a 2  is U( 1) is characterized 
as a semi-dilute system. The asymptotic form of the resistivity is 

a2/k  - q5 In $-’/’+ O($/(ln CJ~”’)~),  

as may be inferred directly from the slender body result (37) with d/a  - Q-’/’. 
Dispersed suspensions in the semi-dilute regime will show the same leading term, but 
the first correction may take a different form dependent upon the structure of the 
suspension. By contrast, for dispersed suspensions of particles with fixed aspect ratio 
d/a ,  all interactions approach zero as $ + 0, and the suspension falls within the dilute 
regime. The scaling of the resistivity is similar to that for dilute suspensions of spheres, 
i.e. $/ln (d /a )  + O(qY3) for periodic systems and Q/ln (d/u) + O(CJ3l2) for random 
systems (Howells 1974). Thus the resistivity results of Claeys & Brady will show 
significant differences from the present model at infinitesimal values of Q. The ratio of 
the resistivity in the two systems will scale as In $-l’’/ln d/a. The reader is referred to 
the papers of Clays & Brady (1993a-c) for a further discussion of the transport 
properties of dispersed suspensions. 

In this paper, we have computed the resistance force F and permeability k for 
ordered fibrous media based on SC, BCC and FCC cubic lattices. We have presented 
accurate numerical results for the full range of volume fractions, and we have 
developed analytical estimates based on the limiting asymptotic theories. We have 
compared our results with simple models based on two-dimensional media, and with 
numerical simulations for disordered suspensions. All of these results are found to be 
consistent with the widely scattered experimental observations. 
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